

6, 1986 CILITICS ITS

DATE: February 26, 1986

SUBJECT: Federal Facilities Inspection-NASA Lewis Research Center, Cleveland, Ohio - Ohio EPA Air Permit #1318001169 (A21589)

FROM: Arthur S. Gedeon, Environmental Scientist

THRU: A.R. Winklhofer, Chief, EDO

TO: Engineering Section, 5AC ATTN: Hattie Geisler

During October 1985, two separate requests (numbers 4-421 and 4C-245) were received from the Air Compliance Branch to perform comprehensive air inspections at selected federal facilities. Such an inspection was done at the NASA Lewis Research Center in Cleveland, Ohio on January 31, 1986. Air permit information was attained from Mr. Walt Meyers of the Cleveland Division of Air Pollution Control prior to our inspection. A print out of the January 4, 1986, Ohio EPA air permit microfiche for the NASA facility is attached for your information (Attachment 1). Ms. Amy L. Bower, Industrial Hygienist and Mr. David Kuivinen, Head of the Chemical Analysis Section for NASA, accompanied me during the inspection. A map of the facility is enclosed. Both Mr. Meyers, Inspector for the Cleveland Division of Air Pollution Control and Dr. Julian M. Earle, Division Chief of NASA's Health, Safety, and Security Division expressed an interest in obtaining a copy of our inspection report.

The main finding of our inspection is that the NASA Lewis Research Center is not a significant source of air pollution. Coal-fired boilers which were used in the past to generate heat and steam have not been used for a number years. In fact, the permit status of two coal-fired boilers have been withdrawn and the boilers are currently inoperable.

The inspection obtained information in the following areas:

- 1) Permitted Sources
 - a) coal, gas, and oil fired boilers
 - b) paint spray booths
 - c) vapor degreasers
 - d) incinerator
 - e) various processes
- 2) Other Sources
 - a) petroleia storige tanks
 - b) auto emission controls
 - c) Sugitive sources
 - d) NESHAPs repulated substances
 - e) pestilite application

A discussion of these sources follows.

43/170

PERMITTED SOURCES

Boilers

Both coal-fired boilers (8001 and 8002) were inspected and found to be inoperable.—NASA no longer plans to burn coal, even in an extreme emergency, to generate heat and steam. Only natural gas and fuel oil are being burned in the remaining boilers.

Three other operating boilers (3003, 8004, and 8005) were inspected. No noticeable sources of visible emissions were observed coming from any of the boiler stacks during the inspections.

The rated input capacities of NASA's thirteen boilers are shown below:

Boiler #	Source #	Fuel Burned	Ingut Capacity 105 BTU/ hr
* 1	3001	Coal	45.4
* 2	B002	Coal	45.4
3	B003	Gas/Oil ~	23.123
4	3004	Gas/0i1	50.212
5	B005	Gas/Oil	90.0
6 7	B006 ·	Gas/Oil	12.6
7	3007	Gas	4.185
10	B008	Gas/Oil	5.821
9	B009	Gas/Oil	5.321
8	8010	Gas/0i1	5.821
11	8011	Gas	2.511
12	B012	Gas	2.5
13	B013	Gas	0.825

* Coal-fired boilers are inoperable and no longer used to generate heat and steam.

Allowable emission rates (EL) in pounds of SO₂ per million BTU actual heat input for fossil fuel plants between 10.0 and 350x10⁶ 3TU's per hour was calculated using the formula:

EL = 7.014 $Q_m^{-0.314}$ - where Q_m is the total rated capacity of heat input in million BTU per hour. .

For boiler #5 where Q_m is 12.6 and boiler #5 where Q_m is 90, the allowable emission rate for SO₂ is 3.44 and 1.85 pounds per million 3TUs repectively. The actual SO₂ rate calculated for #2 fuel oil used by NASA is 0.259 pounds SO₂/M3TU (Attachment 2). SO₂ emissions are well within allowable limits.

Paint Spray Booths

All three paint spray booths are controlled by a water wash wall. Although large in size, 33' to 40' long, they are not a significant source of VOCs due to their limited use and adequate water wall control.

Degreasers

Two of the five degreasers were inspected - L001 and L006. Both are vapor degreasers which are kept covered and ventillated while in use. Actually, L006 was just being installed to replace L003 and was not yet operable. The four vapor and one cold degreaser employ 1,1,1 - trichloroethane and are not a significant source of VOCs.

Incinerator

The incinerator is used to burn paper at a maximum rate of 95 pounds per hour. It is used several times a week to destroy confidential documents. The incinerator is not considered a significant source of air pollution. It was not being used on the day of our inspection.

Process Equipment

The city of Cleveland is currently working with NASA personnel on identifying the number of process type permits which should be issued to the facility. The items being considered for permitting include: engine and combustion testing items, natural gas air drying burners, various woodworking equipment, and mobile component cleaning facility. None of the process equipment is a significant source of air pollution.

OTHER SOURCES

Petroleum Storage Tanks

A listing of petroleum storage sites is attached (Attachment 3). The facility has a total storage capacity of 461,255 gallons with the largest tank having a capacity of 30,000 gallons. About one-third of the tanks are above ground storage. All tanks are vented. According to Ohio Administrative Code (04C-3745-21) section (L)(2)(a), fixed roof tanks with a capacity of less than 40,000 gallons do not require vapor control equipment.

Auto Emission Controls

NASA services all train government vehicles on site. Unleaded gasoline is used for all trans, while regular gasoline (leaded) is used for most of the older model tracks. Catalytic conventers are replaced if needed. No conventers are even removed. Mehicles are emission tested every six months with the verification of testing placed in the operating packet of the car.

Fugitive Sources

Possible sources of fugitive emissions includes a coal pile, unpaved roadways, and temporary construction projects requiring earth moving. The coal pile is under ten feet high and several years old. NASA plans to remove the pile in the near future since coal is no longer burned at the facility. The unpaved roadways receive little traffic and occur in equipment storage areas. NASA has a road reconstruction project occurring at the main entrance to the facility. The project should be completed long before the summer fugitive season. Such road projects can be kept relatively fugitive free with good housekeeping practices.

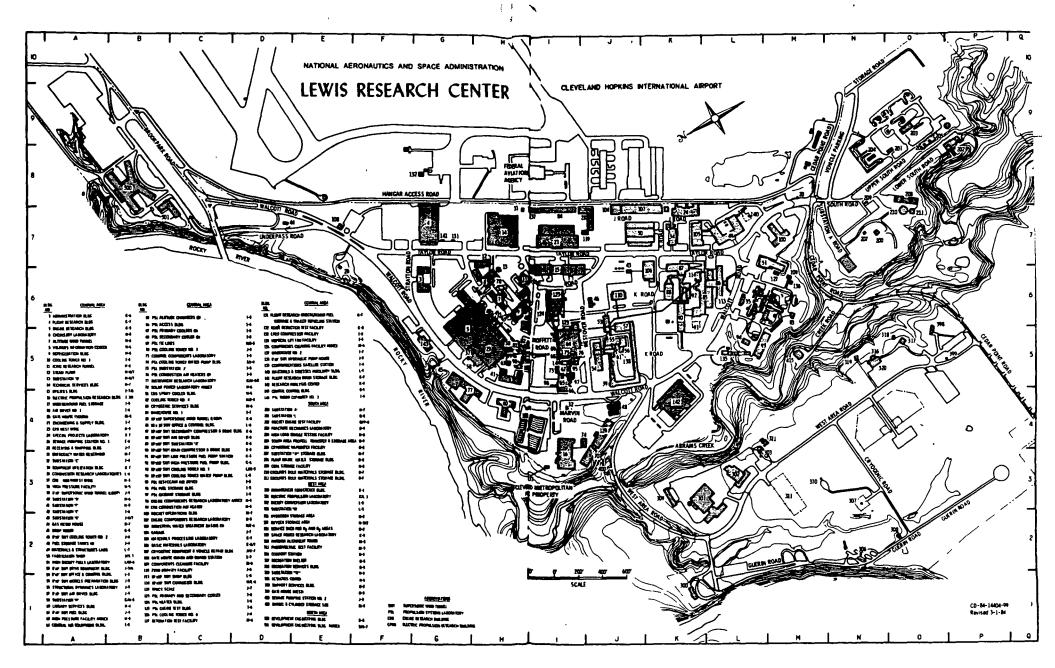
NESHAPs Regulated Substances

NASA has several asbestos removal projects presently taking place. Asbestos is being removed from around piping, boilers, and from ceilings. All removal is done by contractors who have obtained removal permits from the city. Contractors are required to monitor before, during and after removal. NASA may also perform their own testing at any time during removal. The projects viewed during our inspection appeared to be done using approved asbestos removal, bagging, and disposal procedures. NASA plans to remove or encapsulate all asbestos at the facility. NASA's Environmental Health Branch constantly monitors and tests areas known to contain asbestos. Ambient asbestos levels do not pose any health risks to the employees.

Two test chambers in the Electric Propulsion Laboratory (EPL), Building #301, are contaminated with mercury as a result of testing ion propulsion engines. Ionized mercury has bonded or is intimately connected with the interior structure of the large walk-in test vessels. Conventional methods of decontamination do not apply since the mercury is removed from the metal surfaces only when a high vacuum is applied inside the test chambers. The chambers are no longer used and remain sealed. Responsible officials at the EPL are investigating means of mercury removal and seeking adequate funding for the removal project. The contaminated vessels does not now pose a danger to the environment or the employees.

Some radioactive compounds are present in the Materials and Structures tabs (Building #49). In cooperation with the Cleveland Clinic, NASA conducts radioactive cancer therapy. The use of these radioactive materials simuld not be a danger to the environment.

j


Pesticide Application

Attached (Attachment 4) is the 1986 pesticide application program to be used at NASA. Pesticide applications are performed by contract personnel certified and licensed by the State of Ohio. Pesticide dilution rates and methods of application are as specified by the manufacturer.

If there are any questions concerning this inspection report, please contact Art Gedeon at FTS 942-7250.

Attachments

cc: William Franz

Permitted Air Sources

NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio

OEPA Permit # 1318001169

un i 6	APPL 8416	LOCAL	700(T)	04/4	15504	THE CTIVE		GETERATE COM BAIS	9414	46.		100 010	46 m	746
		<u> </u>	<u> </u>					· · · · · · · · · · · · · · · · · · ·						
	16861146 me			e all comme	ENTER	4000 410	nā maāīpā	- 18AL		_{(:}	ivel and			116
	T 771077		רו ו הנו	1 -1	रवक्त	77 5.16		# (1 to 44.				··		-,
ā	"1" \\/\) \$1486 @7 (0	5-1	1 3 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1	. 1	52574°	F T. 774	01 im. 12-	- ;					 -	٠ ,
13			All	-tent	6+678m	/4C1L111	11 wales of	ve 100ml 11	D MPLIC	Allons			PAGE	11//
V4 (1	APPL BAIL TIPE BELV	LOCAL STAT	P40(11)	1 JEP4	1 1 1 UB 0 4 1 1	8775CTEVE	BAIL	ULIEMATE COM BATE	A DATE		(001 (U		TIPE AND	/66 UM/ 81
01	1 3/10/	13 1	14/4//	1	3/41/74	21 31/4	BL06. 14 -	, ,	· ('					,
U4	1/19/		12/4//		1/41//0	11 5114		, ,	,,,				 	<i>-</i> ;
03	3/19/		10111		5/41//6	11 5/14	<u> </u>	MILLE NO.	• , ,					
<u></u>	1 3/19/	WF-81	1884 Bul 167677		3/41//6	1/ 3//4	<u> </u>	<u>- 1 1</u>	·• ,					
	1 1/19/	- 441	بعبا خنو	L. MOLLA	5/41/76	21.3/10	91.0% 3U1	- BOLLER M						
	SLAAVAA	MOURT &	AN-OLL C	WE 301	-		_8484 _1884 ,	- 401148 4	2. /					
	1 3/19/1 1846 /1816/	*****	1474771 1414-110-	10 BOLL			BU6. 300	- HOLLAN N	<u> 14'</u>					
09	100m 1181h		14,44,411 111,419 -		1/21/74	11 3/16	عينكشد	- 601/10 11	<u>"'• '</u>					
10	160# \$188#/			#01-LE	3/41//4	11 5/14	PLAS 340	- <u>foller</u> m	e. 'a '					
11	1 3/10/ IRON PIRAN	75 T Mr. 1685-4	141411		1/21//6	71 5114	8L 64. 1UV	- AVILLA T	111					
14	1 1/14/	/			5/21/76	7/ 5//6	BLOG AUR	- nulvin w	84 14 ·					
11	1 5/10/1 Ohmer Shep	/1 /	14/4//	74 1	5/41//4	71 3/14	BLIN. CHE	. 101.11	0, 13					••••
u1	1 10-26-1	14 1	11/ 4/	15 1	11/29/45	11/49/65		, ,	, ,					
ue.	1 10/26/				<u> </u>	11/44/65	, ,	, ,	, ,	<u> </u>				
61	1 10/46/		11/ 1/			11/4//65	<u> </u>	/ ALE SET	, , casting r	184				
	# AIR #AI R		PRAT	mr van	-4-13-/	11/44/85	<u>.185_819-</u> 1	LAIR HEL	Lualinu L	1111				
	MARKET AND	سلام خلا	APMA HE	ALLEAND.		1-1-164 8:10:03	لتمغف بخلف	<u> </u>	YATUR M	LICA CHY				
	1 10/24/6 8-6-50085	- HEREL	, a, , , , , , , , , , , , , , , , , , ,		1 1 1 1 1 1	ALEXE.	444	ur urin lu	r Arus y	لاهياضا	٠			
··•	1 16/26/	<u> </u>						. ,	, ,		·			
104	1 10/26/ ###################################				11-22 61	11/22-65	LIAL AVIEL	4 (010 (11		ALAXEE.				١
,	I TUTZET	84 1	11			11/22/45		<u>veta lup</u>	TÁPUR US	urlaser				,
/00	1 9121		,		, ,	, ,	, ,	, ,	, ,					*****
····	1 41 41	-			1 (0/45	1.16.65	1125.84	// */85	, ,		u			16 1
	ATABLE THE				. - 1 	7, 5:15		<u> </u>						 ;

OHIO SO2 REGULATION COMPLIANCE CHECK

DATE 2-24-86

FACILITY NAME NASA LEWIS RESEARCH CENTER	
ADDRESS 21000 BRJOKPANE RSAD	
CLEUELAND CHYA406A 0110	
CITY COUNTY STATE	
COMPANY OFFICIAL ANY BOWER	
SOURCE INFORMATION	
BOILER HEAT INFUT CAPACITY (RATED - MBTU/HR)	
CONTROL EQUIPMENT OR PROCEDURES PARTICULATE NOME OF GAS OLL FIRE SO NOME DE BOLLEA	u U
DESIGN EFFICIENCY OF CONTROLS UNEN ONE	
OPERATING EFFICIENCY OF CONTROLS (Tested) WAKNOWA	
DATE OF FUEL ANALYSIS SHOWING THE ABOVE	
COMPUTATIONS	
Coal (Not with) 106 X 0.019 X %S = lbs. S0 ₂ / MBTU BTU/LB	
$\frac{011}{10^6} \times \frac{7.264}{134.871} \text{ BTU/GAL} \times \frac{7.264}{134.871} \text{ EB/GAL} \times 0.02 \times 0.24 \% = 0.259 \text{ lbs. } \text{SO}_2/\text{MI}$	BTU
Oil weights - #1 - 7.00; #2 - 7.34; #5 - 7.76; #6 - 8.09 lbs./gallon	
STATUTORY LIMITATION 1.85-3.44 Ibs. SO ₂ / MBTU X In compliand 1.85 for 90 x106 BTH BOILER; 3.44 for 12.6x156 BTH BOILER Not in compliand the state of the state	nce plia
INSPECTOR'S NAME Cather S. Sale	

Table II - Part I (Cleveland) Oil Storage Sites Subject to This SPCC Plan

All oil storage units subject to the SPCC Plan Regulations - 40 CFR, Part 112, March 26, 1976.

all are verted

		<u> </u>	orage Units				
	Item No.	Number	Unit Capacity (gallons)	Total Capacity (gallons)	Building Number and Site	Storage Unit Above Ground or Buried	Dikes
	اع پرس پرس پرس پرس	1 1 1 1 8	1,000 1,000 300 55	1,000 1,000 300 440	Bldg. 5 - Engine Research Bldg. Trailer Tank Tank Drums	Above Above Above	Yes Yes Yes Yes
X	20 mel	2	30,000	60,000	Bldg. 12 - Steam Plant Tanks	Buried	N/A
*	21 12 A	6	25,000	150,000	Bldg. 17 - Under- ground Fuel Storage Tanks	Buried	N/A
*	22 ; £ A	1	6,000	6,000	Bldg. 24 - Special Projects Lab Tank	Buried	Yes
*	23	1 1 1	1,000 80 200	1,000 80 200	Bldg. 35 - Rocket Laboratory Tank Tank Tank	Above Above Above	Yes Yes Yes
	24 cil	2	2,000	4,000	Bldg. 38 - ERB-SW Wing Extension Tanks	Above	Yes
*	25 \dagger \tau \tau \tau \tau \tau \tau \tau \tau	4	25,000	100,000	Bldg. 48 - Wiggins Tank Farm Tanks Bldg. 53 - 8x6 SWT	Above	Yes
	ille (3 1 3 inued)	800 500 55	2, 4 00 500 165	Drive Equipment Tanks Tank Drums	Internal Lubrication System*	Yes Yes Yes

Table II - Part I (Cleveland) - Continued

	Oil St	orage Units Unit	Total		Storage Unit	
Item No.	Number	Capacity (gallons)	Capacity (gallons)	Building Number and Site	Above Ground or Buried	Dikes
27 :. ຄມີ	L			Bldg. 64 - PSL Equipment		
Lie (ر المسلم 1	2,000 10,000	4,000 10,000	Tanks Tank	Internal Lubrication System*	Yes Yes
28	(iè			Bldg. 85 - 10x10 SWT Loop		
28 	2	1,210 150	2, 42 0 150	Tanks Tank	Internal Hydraulic Oil System*	Yes Yes
29 July	al .			Bldg. 87 - 10x10 SWT Secondary Compressor	Takaanal	
Xu r	3 1	1,000	3,000 800	& Drive Tanks Tank	Internal Lubrication System*	Yes Yes
30 Lube	<i>ji</i> l			Bldg. 90 - 10x10 SWT Main Compressor & Drive		
,L W	4 1 1	1,000 800 500	4,000 800 500	Tanks Tank Tank	Internal Lubrication System*	Yes Yes Yes
31 >-4				Bldg. 91 - 10x10 SWT Low Pressure Fuel		
+ 12 cal 21 - Le	. 3 1	5,000 2,500	15,000 2,500	Pumping Station Trailers Trailer	Above Above	Yes Yes
32		2,000	2,000	Bldg. 104 - Garage Tank	Buried	N/A
الخناه	1 2	6,000	12,000	Tanks	Buried	N/A
33 ,,,	1	1,000	1,000	Bldg. 114 - 10x10 Exhauster Tank	Buried	N/A
34	<u>.</u>	1,000	1,000	Building 124 - PSL	DULIEU	M/ A
P-A				Heater		

¥

X.

Table II - Part I (Cleveland) - Continued

		Oil St	orage Units			-	
	Item No.	Number	Unit Capacity (gallons)	Total Capacity (gallons)	Building Number and Site	Storage Unit Above Ground or Buried	Dikes
*	35 JP-4	2	10,000	20,000	Bldg. 131 - Flight Research Fuel Storage Tanks	Buried	N/A
*	36 , yit H	1	10,000	10,000	Bldg. 132 - Noise Reduction Test Facility Tank	Buried	N/A
*	37 11 t A	1	10,000	10,000	Bldg. 135 - Vertical Lift Fan Facility Tank	Buried	N/A
	38 011,000 7139 pt	200 odust	55	11,000	Bldg. 415 - Barrel & Cylinder Storage Drums	Above	Yes
	شغ الأسمر المسلم الم		10,000	10,000	Bldg. 500 - Development Engineering Tank	Buried	N/A

(Attachment 4)

Lewis Research Center Cleveland, Ohio 44135

Reply to Altn of.

7331

January 7, 1986

TO:

1600/Chief, Environmental Health Office

FROM:

7331/Pesticides Program Monitor

0110.1000. D.-LJ-JI.- L I II

Pesticides to be Used at Lewis Research Center During 1986

Attached is a listing of pesticides to be used at Lewis, during the calendar year 1986.

alexander Machie

Alexander Mackie
Facilities and Grounds Maintenance Section

2 Enclosures

cc:

7330/A. Szuhai 7331/D. Logue 7331/A. Mackie 7330/File

7331/AMackie:ejb:1/8/86:1203Q

CONCURRENCE:

DWL NWJ.

DWN Oun

ABS QUY

File 10.16

IAN 10 1000

CHEMICAL NAME	COMMON OR TRADE NAME	% ACTIVE INGRED. AND FORMULATION	TARGET PEST	SITE DESCRIPTION
2,2-DIS (P-Methoxyphenyl)- 1,1,1-Trchloroethane	Methoxychlor	50% Emulsion Concentrate	Mosquito Control	Recreational Areas
Petroleum Oil	Volok (Dormant Oil Spray)	70% Visocity	Scale Control	Pin Oak Trees
Copper Sulphate Monohydrate	Copper Sulphate	35% Basic Metallic Copper	Cytospora Canker	Blue Spruce Trees
2-(l-Methoxylethoxy) Phenol Methylcarbamate	Bagon	13.9% Emulsif- able Concentrate	Roaches & Ants	In-house Insect Control
Benomy I	Benlate	50% Wettable Powder	Blackspot, Rust and Mildew	Ornamental Trees and Scrubs
Benomy1	Tersan 1991	50% Wettable Powder	Fasarium, Brown Patch, etc.	Lawn Areas
N-Alkyl Dimethyl Benzyl Ammonium Chlorides Plus BIS (Tri-n-butyltin) oxide	Gamlen Gamacide Formula 1825	6.93% Solution	Slime and Algae	Open System Cooling Towers
0,0-Diethyl 0-(2-Isopropyl-4-Methyl-6-Primidinyl) Phosphorothrote	Diazinon 500AG	48% Emulsifable Concentrate	Aphids	Ornamental Trees and Scrubs
Carbaryl I-Napthyl N-Methylcarbamate	Seven	50% Concentrate	Tent Cat- erpillars	Ornamental Trees
<pre>1-Methylenl 2-[[ethoxy[(l- Methylethyl)amino] Phosphinothioyl]oxy] benzoate</pre>	Oftanol	5% Granular	Lawn Grubs	Lawn Areas
4,4-Dichloro-alpha-trichloro Methylbenzhydrol	Kethane (Dicofol)	18.5% Emulsifable Concentrate	Spider Mites	Lawn Areas
N-(I-EtyIpropyI)-3,4-Dimenthyl- 2.6-Di-Nitrobenze-Namine	Pre-M-Lesco 60-DG (Pendimethalin)	60% Granular	Crabgrass	Lawn Areas

·

·

•

.

•

•

•

CHEMICAL NAME	COMMON OR TRADE NAME	% ACTIVE INGRED. AND FORMULATION	TARGET PEST	SITE DESCRIPTION
Diethanolamine Salt of 2,4 Dichlorphenoxyacetic Acid 2,4-D, and Diethanolamine Salt of 2-(4-Chloro-2-Methelphonoxy) Proponic Acid (MCPP).	2,4-D Pluss MCPP	31% MCPP, 15.35% 2,4-D Emulsifable Concentrate	Broadleaf Weeds	Lawn Areas
Isopropylamine Salt of N- (Phosphonomethyl) Glycine	(ANSI, WSSA) Round-up	41% Wettable Solution	Noxious Weeds	Storage Sites, Etc.
Diplacinone [2(Diphenylacelyl)-1,3-Indanedione] and Sodium Salt	Eatons All Weather Bait	0.0052% Bait Blocks	Rodents	Indoors and Outdoors
Tetrachlotoethylenel Trichloto- monofluoromethane. Dichlotodi- fluoromethane. Petroleum Dis- tillate. Methylene Chloride. Pine Oil Rotenone, other related Resins plus Pyrethrins 1 and 11	Wasp Killer Aerosol Spray	100% Emulsifable Concentrate	Wasps and Hornets	Exterior and Interior of Buildings
0,0-Diethylo-(2-Isopropyl-G- Methyl-4-Pyrimidinyl) Phosphor- othioate	Diazinon 4E	47.5% Emulsifable Concentrate	Ants and Roaches	Interior of Buildings

NOTE: Pesticide applications are performed by contract personnel certified and licensed by the State of Ohio on pesticide control. They are monitored by NASA personnel licensed by the State of Ohio. Dilution rates and methods of application are as specified by the manufacturer.

U.S. ENVIRONMENTAL PROTECTION AGENCY

REGION V

EASTERN DISTRICT OFFICE

STATE NOTIFICATION OF INSPECTION

Authority: SECTION 114(d)(1)-CLEAN AIR ACT, AS AMENDED
CWA,TSCA,RCRA,SWDA
Source Name NASA. LEWIS RESEARCE CENTER.
Address 21000 BLOOK PARE RDAD
City CLEUELAND
State OHIO
Person Notified MR. WALT MRYELS
Title INSPECTUR
Organization CLEJELAND DIVISION OF AIR POLLMIN CONTROL
Date of Notification 1-14-86
Planned Date of Inspection 1-31-86
Purpose of Inspection (compliance monitoring, Enforcement Division request etc.)
ENFORCEMENT DIVISION REQUEST
Scope Comprehensive Air INSPECTION
Person Giving Notice Arthur S. Gedeon
Title Environmental Scientist
Organication U.S.EPA, Region V, Eastern District Office

Action S. S. S. S. (signature)

(A copy of this notification must accompany each Air inspection report). For all other types of inspections include with file copy of report.